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Instructions 
• Use black ink or ball-point pen.
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• A booklet ‘Mathematical Formulae and Statistical Tables’ is provided.
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• The marks for each question are shown in brackets – use this as a guide as to how much

time to spend on each question.

Advice 
• Read each question carefully before you start to answer it.
• Try to answer every question.
• Check your answers if you have time at the end.
• If you change your mind about an answer, cross it out and put your new answer and any

working underneath.
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1.  𝑦𝑦 = �(2𝑥𝑥 + 𝑥𝑥) 

a. Complete the table below, giving the values of y to 3 decimal places.

         (1) 

b. Use the trapezium rule with all the values of y from your table to find an approximation

for the value of

∫ �(2𝑥𝑥 + 𝑥𝑥)1
0    d𝑥𝑥 

         giving your answer to 3 significant figures. 

(3) 

𝑥𝑥 0 0.2 0.4 0.6 0.8 1 
𝑦𝑦 1 1.161 1.311 1.732 
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Using your answer to part (b) and making your method clear, estimate 

c. ∫ �(22𝑥𝑥 + 2𝑥𝑥)0.5
0    d𝑥𝑥 

(2) 

   (Total for Question 1 is 6 marks) 
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2.  

5

Figure 1 

      Figure 1 shows a triangle OAC where OB divides AC in the ratio 2 : 3.       

Show that b = 1 (3a + 2c) 

(3) 

   (Total for Question 2 is 3 marks) 
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3. Use the laws of logarithms to solve the equation

2 + log2(2𝑥𝑥 + 1) = 2log2(22 − 𝑥𝑥) 

(6) 

   (Total for Question 3 is 6 marks) 
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4. In the binomial expansion of (2 − 𝑘𝑘𝑥𝑥)10 where k is a non-zero positive constant.

The coefficient of 𝑥𝑥4 is 256 times the coefficient of 𝑥𝑥6.

Find the value of k.

(3) 

   (Total for Question 4 is 3 marks) 
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5. a. Given that

𝑥𝑥2 − 1
𝑥𝑥 + 3

≡ 𝑥𝑥 + 𝑃𝑃 +
𝑄𝑄

𝑥𝑥 + 3

       find the value of the constant P and show that 𝑄𝑄 = 8 

(2) 

Figure 3 

R 
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 The curve C has equation 𝑦𝑦 = g(𝑥𝑥), where 

g(𝑥𝑥) = 𝑥𝑥2−1
𝑥𝑥+3

         𝑥𝑥 > −3 

        Figure 3 shows a sketch of the curve C. 

        The region R, shown shaded in Figure 4, is bounded by C, the x-axis and the line with  

         equation x = 5. 

b. Find the exact area of R, writing your answer in the form 𝑎𝑎 ln 2, where a is constant to

be found.

(4) 

   (Total for Question 5 is 6 marks) 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu



6.  

Figure 4 

      Figure 4 shows a sketch of the curve C with equation 𝑦𝑦 = f(𝑥𝑥), where 

f(𝑥𝑥) = 2𝑥𝑥2−𝑥𝑥
√𝑥𝑥

− 2ln �𝑥𝑥
2
� ,       𝑥𝑥 > 0

The curve has a minimum turning point at Q, as shown in Figure 4.

a. Show that f ′(𝑥𝑥) = 6𝑥𝑥2−𝑥𝑥−4√𝑥𝑥
2𝑥𝑥√𝑥𝑥

(4)
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b. Show that the x-coordinate of Q is the solution of

𝑥𝑥 = �𝑥𝑥
6

+ 2√𝑥𝑥
3

(2)
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To find an approximation for the x-coordinate of Q, the iteration formula 

𝑥𝑥𝑛𝑛+1 = �𝑥𝑥𝑛𝑛
6

+ 2�𝑥𝑥𝑛𝑛
3

    is used. 

c. Taking 𝑥𝑥0 = 0.8, find the values of 𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3.

Give your answers to 3 decimal places.

(3) 

   (Total for Question 6 is 9 marks) 
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7. A curve C has equation 𝑦𝑦 = f(𝑥𝑥). 

   Given that  

• f ′(𝑥𝑥) = 18𝑥𝑥2 + 2𝑎𝑎𝑥𝑥 + 𝑏𝑏 
• the y-intercept of C is −48 
• the point A, with coordinates (−1,45) lies on C 

    a. Show that 𝑎𝑎 − 𝑏𝑏 = 99 

(4) 

 

 

 

 

 

 

 

 

 

    The tangent to C at the point A has gradient −84. 

 

    b. Find the value of a and the value of b. 

(3) 
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c. Show that (2𝑥𝑥 + 1) is a factor of f(𝑥𝑥).

(2) 

   (Total for Question 7 is 9 marks) 
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8.  

Figure 2  

     The curves with equation 𝑦𝑦 = 21 − 2𝑥𝑥 meet the curve with equation 𝑦𝑦 = 22𝑥𝑥+1 at the 

     point A as shown in Figure 2.  

     Find the exact coordinates of point A. 

(4) 

   (Total for Question 8 is 4 marks) 

𝑦𝑦 = 21 − 2𝑥𝑥 
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9. A cup of tea is cooling down in a room.

The temperature of tea, 𝜃𝜃℃, at time t minutes after the tea is made, is modelled by the

equation

𝜃𝜃 = 𝐴𝐴 + 70𝑒𝑒−0.025𝑡𝑡 

     where A is a positive constant. 

     Given that the initial temperature of the tea is 85℃ 

a. find the value of A.

(1) 

b. Find the temperature of the tea 20 minutes after it is made.

(2)
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c. Find how long it will take the tea to cool down to 43℃.

(4) 

   (Total for Question 9 is 7 marks) 
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10. a. Show that

sin 3𝐴𝐴 ≡ 3 sin𝐴𝐴 − 4sin3𝐴𝐴 

(4)
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b. Hence solve, for −𝜋𝜋
2
≤ 𝜃𝜃 ≤ 𝜋𝜋

2
 the equation

1 + sin 3𝜃𝜃 = cos2𝜃𝜃 

(3) 

   (Total for Question 10 is 7 marks) 
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11. a. Sketch the graph of the function with equation   

   𝑦𝑦 = 11 − 2|2 − 𝑥𝑥| 

          Stating the coordinates of the maximum point and any points where the graph cuts the  

          y-axis. 

(3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     b. Solve the equation 

   4𝑥𝑥 = 11 − 2|2 − 𝑥𝑥| 

(2) 
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A straight line l has equation 𝑦𝑦 = 𝑘𝑘𝑥𝑥 + 13, where k is a constant. 

     Given that l does not meet or intersect  𝑦𝑦 = 11 − 2|2 − 𝑥𝑥| 

c. find the range of possible value of k.

(3) 

   (Total for Question 11 is 8 marks) 
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12.  

 

 

 

 

 

 

 

 

Figure 5 

       Figure 5 shows part of the curve C with parametric equations 

   𝑥𝑥 = 2 cos 𝜃𝜃                 𝑦𝑦 = sin 2𝜃𝜃               0 ≤ 𝜃𝜃 ≤ 𝜋𝜋
2
 

       The region R, shown shaded in figure 5, is bounded by the curve C, the line 𝑥𝑥 = √2  

       and the x-axis.  This shaded region is rotated through 2𝜋𝜋 radians about the x-axis to form  

       a solid revolution. 

       a. Show that the volume of the solid of revolution formed is given by the integral. 

       

𝑘𝑘 � sin3𝜃𝜃cos2𝜃𝜃    d𝜃𝜃

𝜋𝜋
2

𝜋𝜋
4

 

          where k is a constant. 

(5) 
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b. Hence, find the exact value for this volume, giving your answer in the form

            𝑝𝑝𝜋𝜋√2 where p is a constant. 

(5) 

   (Total for Question 12 is 10 marks) 
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13. The function g is defined by

g(𝑥𝑥) = 2𝑒𝑒𝑥𝑥−5
𝑒𝑒𝑥𝑥−4

           𝑥𝑥 ≠ 𝑘𝑘,   𝑥𝑥 > 0 

      where k is a constant. 

a. Deduce the value of k.

(1) 

b. Prove that

g′(𝑥𝑥) < 0 

          For all values of x in the domain of g. 

(3)
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c. Find the range of values of a for which

g(𝑎𝑎) > 0 

(2) 

   (Total for Question 13 is 6 marks) 
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14. A circle C has equation 𝑥𝑥2 + 𝑦𝑦2 − 6𝑥𝑥 − 14𝑦𝑦 = 40.

The line l has equation 𝑦𝑦 = 𝑥𝑥 + 𝑘𝑘, where k is a constant.

a. Show that the x-coordinate of the points where C and l intersect are given by the

solutions to the equation

2𝑥𝑥2 + (2𝑘𝑘 − 20)𝑥𝑥 + 𝑘𝑘2 − 14𝑘𝑘 − 40 = 0 

    (2) 

b. Hence find the two values of k for which l is a tangent to C.

(4) 

   (Total for Question 14 is 6 marks) 
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15. An infinite geometric series has first four terms 1 − 2𝑥𝑥 + 4𝑥𝑥2 − 8𝑥𝑥3 + ⋯ . The series is

convergent.

a. Find the set of possible values of x for which the series converges.

(2) 

      Given that                                 , 

b. calculate the value of x.

(3) 

   (Total for Question 15 is 5 marks) 

�(−2𝑥𝑥)𝑟𝑟−1 = 8
∞

𝑟𝑟=1

 , 

https://bit.ly/pmt-cc
https://bit.ly/pmt-cchttps://bit.ly/pmt-edu



16. Prove by contradiction that if n2 is a multiple of 3, n is a multiple of 3.

(5) 

   (Total for Question 16 is 5 marks) 
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